Abstract

Apple fruit damages seriously cause product and economic losses, infringe consumer rights and interests, and have harmful effects on human and livestock health. In this study, Raman spectroscopy (RS) and cascade forest (CForest) were adopted to determine apple fruit damages. First, the RS spectra of healthy, bruised, Rhizopus-infected, and Botrytis-infected apples were measured. Spectral changes and band attribution were analyzed. Different modeling methods were combined with various pre-processing and dimension reduction methods to construct recognition models. Among all models, CForest constructed with full spectra processed by Savitsky-Golay smoothing obtained the best performance with accuracies of 100%, 91.96%, and 92.80% in the training, validation, and test sets (ACCTE). And the modeling time is reduced to 1/3 of the full-spectra model with a similar ACCTE of 91.56% after principal component analysis. Overall, RS and CForest provided a non-destructive, rapid, and accurate identification of apple fruit damages and could be used in disease recognition and safety assurance of other fruits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.