Abstract

AbstractAnnexin A5 (A5) forms 2-dimensional crystals over phospholipid bilayers, blocking their availability for coagulation reactions. Recently, human antiphospholipid (aPL) monoclonal antibodies (mAbs) have been demonstrated by atomic force microscopy (AFM) to disrupt this crystallization and accelerate coagulation. We therefore performed a study with small, well-defined groups of patients to investigate whether these effects on A5 binding and activity are also detectable in plasmas from patients with the aPL syndrome. A5 binding to phospholipid was significantly reduced by plasmas of patients with the aPL syndrome and thromboembolism compared with healthy controls (mean ± SD, 26.7 ± 4.3 ng/well [n = 25] vs 30.5 ± 3.1 ng/well [n = 20], P < .01) and the non-aPL thromboembolism group (29.9 ± 3.2 ng/well [n = 15], P < .05). A5 anticoagulant activity was reduced by plasmas of patients with aPL syndrome and thromboembolism compared with aPL antibodies without thrombosis (182 ± 31% [n = 25] vs 210 ± 35% [n = 26], P < .01), non-aPL thromboembolism (229 ± 16% [n = 15], P < .001), and healthy controls (231 ± 14% [n = 30], P < .001). In conclusion, in accordance with recent AFM data with monoclonal human aPL antibodies, plasmas from patients with aPL antibodies with thromboembolism reduce both A5 binding to phospholipid and A5 anticoagulant activity. This “annexin A5 resistance” identifies a novel mechanism for thrombosis in the aPL syndrome. (Blood. 2004;104: 2783-2790)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.