Abstract

Assembly of Amyloid beta (Aβ) peptides, in particular Aβ-42 is central to the formation of the amyloid plaques associated with neuro-pathologies such as Alzheimer’s disease (AD). Molecular assembly of individual Aβ-42 species was observed using a simple fluorescence microscope. From the molecular movements (aka Brownian motion) of the individual peptide assemblies, we calculated a temporal evolution of the hydrodynamic radius (RH) of the peptide at physiological temperature and pH. The results clearly show a direct relationship between RH of Aβ-42 and incubation period, corresponding to the previously reported peptide’s aggregation kinetics. The data correlates highly with in solution-based label-free electrochemical detection of the peptide’s aggregation, and Aβ-42 deposited on a solid surface and analysed using atomic force microscopy (AFM). To the best of our knowledge, this is the first analysis and characterisation of Aβ aggregation based on capturing molecular trails of individual assemblies. The technique enables both real-time observation and a semi-quantitative distribution profile of the various stages of Aβ assembly, at microM peptide concentration. Our method is a promising candidate for real-time observation and analysis of the effect of other pathologically-relevant molecules such as metal ions on pathways to Aβ oligomerisation and aggregation. The method is also a promising screening tool for AD therapeutics that target Aβ assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.