Abstract
Detection of hydrothermal alteration zones (HAZs) associated with porphyry copper systems using remote sensing imagery is a crucial stage for discovering high potential zone of ore mineralization. Statistical model-based clustering methods have great potential for automatic and accurate detection of hydrothermal alteration minerals using hyperspectral remote sensing imagery. In this research, the Dirichlet Process based on Stick-Breaking (DPSB) model-based clustering algorithm was implemented to hyperion remote sensing imagery to discriminate HAZs associated with the Kuh-Panj porphyry copper deposit, south, Iran. The DPSB clustering algorithm was implemented and subsequently compared with the k-means algorithm, CLARA clustering, hierarchical clustering, Gaussian finite mixture model (GFMM), Gaussian model for high-dimensional (GMHD) and spectral clustering as well as spectral angle mapping (SAM). Results derived from the DPSB model-based clustering algorithm show 88.6% accuracy in distinguishing propylitic, argillic, advanced argillic, propylitic-argillic and phyllic alteration zones. The DPSB algorithm can be broadly implemented to hyperspectral remote sensing imagery for detecting alteration zones associated with porphyry systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.