Abstract
Adulteration detection of argan oil is one of the main aspects of its quality control. Following recent fraud scandals, it is mandatory to ensure product quality and customer protection. The aim of this study is to detect the percentages of adulteration of argan oil with sunflower oil by using the combination of a voltammetric e-tongue and an e-nose based on metal oxide semiconductor sensors and pattern recognition techniques. Data analysis is performed by three pattern recognition methods: principal component analysis (PCA), discriminant factor analysis (DFA), and support vector machines (SVMs). Excellent results were obtained in the differentiation between unadulterated and adulterated argan oil with sunflower one. To the best of our knowledge, this is the first attempt to demonstrate whether the combined e-nose and e-tongue technologies could be successfully applied to the detection of adulteration of argan oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.