Abstract
People are constantly being exposed to toxic and carcinogenic aldehydes. However, little is actually known about the mechanisms underlying the toxic and carcinogenic effects of these aldehydes on human cells. The DNA alkylating activities of two of the more toxic and environmentally prominent alpha,beta-unsaturated aldehydes, acrolein and crotonaldehyde, have been studied utilizing 32P-postlabeling and nucleotide chromatographic techniques. Several putative adducts were observed in DNAs isolated from acrolein- and crotonaldehyde-treated human fibroblasts. One of these acrolein-DNA adducts was tentatively identified as the cyclic 1,N2-hydroxypropanodeoxyguanosine product, 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2- a]purine-10-one, by co-chromatography with a chemical standard. The 1,N2-hydroxypropanodeoxyguanosine along with other possible adducts, was also found in DNA isolated from peripheral blood lymphocytes obtained from a dog 1 h after receiving a therapeutic dose of 6.6 mg/kg of cyclophosphamide. These results not only demonstrate the presence of acrolein and crotonaldehyde DNA adducts in treated human cells, but also suggest that these sensitive techniques may be useful to the study of the importance of acrolein to both the carcinogenic and antineoplastic activities of cyclophosphamide and other oxazaphosphorine mustards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.