Abstract
Achieving maritime security is challenging due to the vastness and complexity of the domain. Monitoring all Achieving maritime security is challenging due to the vastness and complexity of the domain. Monitoringall vessels that use this medium is humanly impossible but is needed for law enforcement. This paper proposes amachine learning solution based on HDBSCAN+ to classify the movements of vessels into ‘normal’ or ‘abnormal’.This classification reduces the number of vessels that have to be monitored by law enforcement agencies to amanageable size. To date, AIS is the primary source of information that can represent vessel movements andenable the detection of maritime anomalies. The proposed model uses latitude, longitude, type of vessel, courseand speed as features of the AIS data for analysis. The performance of the proposed model is validated against the marine incidents reported by Information Fusion Centre-Indian Ocean Region (IFC-IOR). The proposed model has successfully detected the incidents reported by IFC-IOR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.