Abstract

We observe a $N\times M$ matrix $Y_{ij}=s_{ij}+\xi_{ij}$ with $\xi_{ij}\sim {\mathcal {N}}(0,1)$ i.i.d. in $i,j$, and $s_{ij}\in \mathbb {R}$. We test the null hypothesis $s_{ij}=0$ for all $i,j$ against the alternative that there exists some submatrix of size $n\times m$ with significant elements in the sense that $s_{ij}\ge a>0$. We propose a test procedure and compute the asymptotical detection boundary $a$ so that the maximal testing risk tends to 0 as $M\to\infty$, $N\to\infty$, $p=n/N\to0$, $q=m/M\to0$. We prove that this boundary is asymptotically sharp minimax under some additional constraints. Relations with other testing problems are discussed. We propose a testing procedure which adapts to unknown $(n,m)$ within some given set and compute the adaptive sharp rates. The implementation of our test procedure on synthetic data shows excellent behavior for sparse, not necessarily squared matrices. We extend our sharp minimax results in different directions: first, to Gaussian matrices with unknown variance, next, to matrices of random variables having a distribution from an exponential family (non-Gaussian) and, finally, to a two-sided alternative for matrices with Gaussian elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.