Abstract

Abstract A low-frequency ion instability, with frequency f I between the ion gyrofrequency and the lower hybrid frequency f c , i < f I ≪ f LH , is detected in an argon plasma expanding in a magnetic nozzle for magnetic fields between 240 < B z , max < 700 G. The frequency of the instability exhibits a linear dependence with magnetic field strength, and the wave amplitude has a radial maximum that would match the location of a conical density structure, i.e. high-density cones. For all of the magnetic field cases analysed, the high-frequency spectra showed upper and lower sidebands centred around the driving frequency and at a separation equal to the instability frequency, 27.12 MHz ± f I kHz. Measurements of the perpendicular wavenumber would satisfy, for certain magnetic field strengths, the dispersion relation of both an electrostatic ion cyclotron wave (ICW) and of an ion acoustic wave. It is hypothesised that the observed low-frequency wave could be an acoustic-like instability propagating perpendicular to the magnetic field, which develops as an ICW at some magnetic field strengths. From the data collected, it is suggested that the high-frequency sidebands may be caused by modulation of the low-frequency wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.