Abstract

A cell culture model of bovine aortic endothelial cells attached to microcarrier beads was used to study the interaction of diaspirin cross-linked hemoglobin (an oxygen-carrying blood substitute) with hypoxia-reoxygenation. Hemoglobin (200 microM) and hypoxia-volume restriction (3-5 h), together and separately, caused toxicity in this model, as measured by decreased cellular replating efficiency. Hemoglobin (60 microM) caused a reduction in hydrogen peroxide concentration and an increase in lipid peroxidation above that induced by hypoxia alone. Incubation of hemoglobin with endothelial cells caused transient oxidation of hemoglobin to its highly reactive and toxic ferryl species after >/=3 h of hypoxia, followed by 1 h of reoxygenation. Lipid peroxidation, which may occur in the presence of ferrylhemoglobin, also occurred after 1 h of reoxygenation. Hemoglobin caused a dose-dependent decrease in intracellular glutathione concentration, suggesting that it caused an oxidative stress to the cells. However, addition of ascorbate, alpha-tocopherol, or trolox did not decrease hemoglobin oxidation in the presence of normal or hypoxic cells. It is concluded that diaspirin cross-linked hemoglobin forms a ferryl intermediate in the absence of any exogenously added oxidant and contributes to the oxidative burden experienced by endothelial cells after hypoxia-reoxygenation, a condition that is likely to be encountered during trauma and surgery when hemoglobin solutions are used as perfusion agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.