Abstract

There is increasing interest in liquid biopsy for cancer diagnosis, prognosis and therapeutic monitoring, creating the need for reliable and useful biomarkers for clinical practice. Here, we present a protocol to extract, reverse transcribe and evaluate the expression levels of circulating miRNAs from plasma samples of patients with colorectal cancer (CRC). microRNAs (miRNAs) are a class of non-coding RNAs of 18-25 nucleotides in length that regulate the expression of target genes at the translational level and play an important role, including that of pro- and anti-angiogenic function, in the physiopathology of various organs. miRNAs are stable in biological fluids such as serum and plasma, which renders them ideal circulating biomarkers for cancer diagnosis, prognosis and treatment decision-making and monitoring. Circulating miRNA extraction was performed using a rapid and effective method that involves both organic and column-based methodologies. For miRNA retrotranscription, we used a multi-step procedure that considers polyadenylation at 3' and the ligation of an adapter at 5' of the mature miRNAs, followed by random miRNA pre-amplification. We selected a 24-miRNA custom panel to be tested by quantitative real-time polymerase chain reaction (qRT-PCR) and spotted the miRNA probes on array custom plates. We performed qRT-PCR plate runs on a real-time PCR System. Housekeeping miRNAs for normalization were selected using GeNorm software (v. 3.2). Data were analyzed using Expression suite software (v 1.1) and statistical analyses were performed. The method proved to be reliable and technically robust and could be useful to evaluate biomarker levels in liquid samples such as plasma and/or serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.