Abstract

The National Reference Centre for Staphylococci and Enterococci in Germany has received an increasing number of clinical linezolid-resistant E. faecium isolates in recent years. Five isolates harbored a cfr(B) variant gene locus the product of which is capable of conferring linezolid resistance. The cfr(B)-like methyltransferase gene was also detected in Clostridium difficile. Antimicrobial susceptibility was determined for cfr(B)-positive and linezolid-resistant E. faecium isolates and two isogenic C. difficile strains. All strains were subjected to whole genome sequencing and analyzed with respect to mutations in the 23S rDNA, rplC, rplD and rplV genes and integration sites of the cfr(B) variant locus. To evaluate methyltransferase function, the cfr(B) variant of Enterococcus and Clostridium was expressed in both E. coli and Enterococcus spp. Ribosomal target site mutations were detected in E. faecium strains but absent in clostridia. Sequencing revealed 99.9% identity between cfr(B) of Enterococcus and cfr of Clostridium. The methyltransferase gene is encoded by transposon Tn6218 which was present in C. difficile Ox3196, truncated in some E. faecium and absent in C. difficile Ox3206. The latter finding explains the lack of linezolid and chloramphenicol resistance in C. difficile Ox3206 and demonstrates for the first time a direct correlation of elevated linezolid MICs in C. difficile upon cfr acquisition. Tn6218 insertion sites revealed novel target loci for integration, both within the bacterial chromosome and as an integral part of plasmids. Importantly, the very first plasmid-association of a cfr(B) variant was observed. Although we failed to measure cfr(B)-mediated resistance in transformed laboratory strains the occurrence of the multidrug resistance gene cfr on putatively highly mobile and/or extrachromosomal DNA in clinical isolates is worrisome with respect to dissemination of antibiotic resistances.

Highlights

  • The oxazolidinone linezolid represents an antibiotic of last resort used to treat severe infections that are caused by multidrug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus spp. (VRE)

  • Determination of resistance development to antibiotics of last resort, such as resistance to the oxazolidinone linezolid, is of global importance with respect to remaining treatment options for severe infections caused by multidrug-resistant bacteria

  • In accordance, detailed molecular investigation of strains from the present study showed the combination of DNA mutations and presence of a cfr(B) variant, with isolate UW11733 being the sole exception

Read more

Summary

Introduction

The oxazolidinone linezolid represents an antibiotic of last resort used to treat severe infections that are caused by multidrug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus spp. (VRE). The oxazolidinone linezolid represents an antibiotic of last resort used to treat severe infections that are caused by multidrug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus spp. According to a recent Threats Report from the Centre for Disease Control and Prevention, MRSA and VRE are listed under serious threats which require public health monitoring (http://www.cdc.gov/drugresistance/threat-report-2013/). Considered as an important nosocomial pathogen VRE can cause life-threatening diseases including septicemia, endocarditis or urinary tract infections. In addition to mechanisms such as mutations in the 23S rDNA or ribosomal protein genes rplC, rplD and rplV, resistance to linezolid is mediated by acquisition of the cfr RNA methyltransferase [5,6,7,8]. Cfr confers insusceptibility to oxazolidinones, and to a broad range of antibiotics collectively known as PhLOPSA (Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins and Streptogramin A) [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call