Abstract

Context. Methanol masers at 6.7 GHz have been found exclusively towards high-mass star forming regions. Recently, some Class 0 protostars have been found to display conditions similar to what are found in hot cores that are associated with massive star formation. These hot corino sources have densities, gas temperatures, and methanol abundances that are adequate for exciting strong 6.7 GHz maser emission. Aims. This raises the question of whether 6.7 GHz methanol masers can be found in both hot corinos and massive star forming regions, and if not, whether thermal methanol emission can be detected. Methods. We searched for the 6.7 GHz methanol line towards five hot corino sources in the Perseus region using the Arecibo radio telescope. To constrain the excitation conditions of methanol, we observed thermal submillimeter lines of methanol in the NGC 1333-IRAS 4 region with the APEX telescope. Results. We did not detect 6.7 GHz emission in any of the sources, but found absorption against the cosmic microwave background in NGC 1333-IRAS 4A and NGC 1333-IRAS 4B. Using a large velocity gradient analysis, we modeled the excitation of methanol over a wide range of physical parameters, and verify that the 6.7 GHz line is indeed strongly anti-inverted for densities lower than 10 6 cm -3 . We used the submillimeter observations of methanol to verify the predictions of our model for IRAS 4A by comparison with other CH 3 OH transitions. Our results indicate that the methanol observations from the APEX and Arecibo telescopes are consistent with dense ( n ~ 10 6 cm -3 ), cold ( T ~ 15-30 K) gas. Conclusions. The lack of maser emission in hot corinos and low-mass protostellar objects in general may be due to densities that are much higher than the quenching density in the region where the radiation field is conducive to maser pumping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.