Abstract

Automated detection of diseases (such as mastitis) in dairy cows might be an alternative for detection by observation during milking — especially when using an automatic milking system (AMS). An outline of a detection model is given. This detection model includes time-series models for two variables (milk yield and electrical conductivity of milk), with interpolation on previous values. The model is flexible in the number of variables actually used. Parameter values and the residual variances are updated by linear regression after each milking. Alerts for mastitis are given when the residuals fall outside given confidence intervals. A data set with 111 cows for 16 months (on average, 58 lactating cows per day) was used to test the model. Depending on the chosen confidence interval, 42–44 out of 48 cases of clinical mastitis were detected; the remaining cases were not detected because not all data needed were available. These results were better than the results obtained with the model usually used on the farm. The number of false-positive alerts depended on the chosen confidence interval and was higher than the number found with the model usually used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.