Abstract

Nondestructive testing (NDT) for damage in thermal barrier coatings (TBCs) is significant for the safety guarantee of gas turbine blades. As a new NDT technology, electromagnetic acoustic transducer (EMAT) is widely applied for NDT of conductive structural components due to its advantages of coupling-free and high adaptability. In this paper, numerical simulations are conducted to study the wave propagation and interaction with delamination defects in TBCs inspected with a Rayleigh wave EMAT of the Lorentz force mechanism. Based on the numerical results, the wave structure in TBC, wave conversion at delamination defect, time domain EMAT signals, and its B-scan images are evaluated and the feasibility of Rayleigh wave EMAT to inspect delamination in TBCs was theoretically clarified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call