Abstract

BackgroundThermotolerant Campylobacter jejuni, coli and lari are recognized as leading food-borne pathogens causing an acute bacterial enteritis worldwide. Due to narrow spectrum of their biochemical activity, it is very complicated to distinguish between individual species. For reliable risk assessment, proper incidence evaluation or swift sample analysis regarding individual species, a demand for simple and rapid method for their distinguishing is reasonable. In this study, we evaluated a reliable and simple approach for their simultaneous detection, species identification and quantification using multiplex qPCR.ResultsSpecies specific primers and hydrolysis probes are directed to hippuricase gene of C. jejuni, serine hydroxymethyltransferase gene of C. coli and peptidase T gene of C. lari. Efficiencies of reactions were 90.85% for C. jejuni, 96.97% for C. coli and 92.89% for C. lari. At 95.00% confidence level and when cut off is set to 38 cycles, limits of detection are in all cases under 10 genome copies per reaction which is very appreciated since it is known that infectious doses are very low.ConclusionsProposed assay was positively validated on different food matrices (chicken wing rinses, chicken juice and homogenized fried chicken strips). No inhibition of PCR reaction occurred. Assay was evaluated in accordance with MIQE handbook.

Highlights

  • Thermotolerant Campylobacter jejuni, coli and lari are recognized as leading food-borne pathogens causing an acute bacterial enteritis worldwide

  • Thermotolerant bacteria belonging to Campylobacter genus are recognised as leading human foodborne pathogens causing an acute gastrointestinal disease called campylobacteriosis

  • Another issue linked with classical microbiological methods, which should be mentioned, is their inability to detect viable but non-culturable bacteria (VBNC)

Read more

Summary

Results

Species specific primers and hydrolysis probes are directed to hippuricase gene of C. jejuni, serine hydroxymethyltransferase gene of C. coli and peptidase T gene of C. lari. Efficiencies of reactions were 90.85% for C. jejuni, 96.97% for C. coli and 92.89% for C. lari. At 95.00% confidence level and when cut off is set to 38 cycles, limits of detection are in all cases under 10 genome copies per reaction which is very appreciated since it is known that infectious doses are very low

Conclusions
Background
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.