Abstract

Detection involves locating all candidate regions of interest (objects) in a scene independent of the object class with object distortions and contrast differences, etc., present. It is one of the most formidable problems in automatic target recognition, since it involves analysis of every local scene region. We consider new detection algorithms and the fusion of their outputs to reduce the probability of false alarm P(FA) while maintaining high probability of detection P(D). Emphasis is given to detecting obscured targets in infrared imagery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.