Abstract

It is known that copy number variations (CNVs) are associated with complex diseases and particular tumor types, thus reliable identification of CNVs is of great potential value. Recent advances in next generation sequencing (NGS) data analysis have helped manifest the richness of CNV information. However, the performances of these methods are not consistent. Reliably finding CNVs in NGS data in an efficient way remains a challenging topic, worthy of further investigation. Accordingly, we tackle the problem by formulating CNVs identification into a quadratic optimization problem involving two constraints. By imposing the constraints of sparsity and smoothness, the reconstructed read depth signal from NGS is anticipated to fit the CNVs patterns more accurately. An efficient numerical solution tailored from alternating direction minimization (ADM) framework is elaborated. We demonstrate the advantages of the proposed method, namely ADM-CNV, by comparing it with six popular CNV detection methods using synthetic, simulated, and empirical sequencing data. It is shown that the proposed approach can successfully reconstruct CNV patterns from raw data, and achieve superior or comparable performance in detection of the CNVs compared to the existing counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.