Abstract
Diabetic Retinopathy (DR) is an eye condition that mainly affects individuals who have diabetes and is one of the important causes of blindness in adults. As the infection progresses, it may lead to permanent loss of vision. Diagnosing diabetic retinopathy manually with the help of an ophthalmologist has been a tedious and a very laborious procedure. This paper not only focuses on diabetic retinopathy detection but also on the analysis of different DR stages, which is performed with the help of Deep Learning (DL) and transfer learning algorithms. Diabetic Retinopathy (DR) is one of the leading causes of blindness for people who have diabetes in the world. Early detection of this disease can essentially decrease its effects on the patient. Dense Net are used on a huge dataset with around 3662 train images to automatically detect which stage DR has progressed. Five DR stages, which are 0 (No DR), 1 (Mild DR), 2 (Moderate), 3 (Severe) and 4 (Proliferative DR) are processed in the proposed work. It presented an AI based smart tele ophthalmology application for diagnosis of diabetic retinopathy. The app has the ability to facilitate the analyses of eye fundus images via deep learning from the Kaggle database using Tensor Flow mathematical library. The app would be useful in promoting health and timely treatment of diabetic retinopathy by clinicians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.