Abstract
Automatic image and video exploitation or content analysis is a technique to extract higher-level information from a scene such as objects, behavior, (inter-)actions, environment, or even weather conditions. The relevant information is assumed to be contained in the two-dimensional signal provided in an image (width and height in pixels) or the three-dimensional signal provided in a video (width, height, and time). But also intermediate-level information such as object classes [196], locations [197], or motion [198] can help applications to fulfill certain tasks such as intelligent compression [199], video summarization [200], or video retrieval [201]. Usually, videos with their temporal dimension are a richer source of data compared to single images [202] and thus certain video content can be extracted from videos only such as object motion or object behavior. Often, machine learning or nowadays deep learning techniques are utilized to model prior knowledge about object or scene appearance using labeled training samples [203, 204]. After a learning phase, these models are then applied in real world applications, which is called inference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.