Abstract

American foulbrood is a devastating disease of honey bee, causing economic loss in the beekeeping industry. The disease mainly causes reduction in honeybee populations which negatively affect the honey bee's major role as natural pollinators of significant crops and wildflowers. Thus, it is crucial to develop safe efficient strategies to control the disease and to improve bee colony health. Using lactic acid bacteria (LAB) as an alternative to chemical treatments is a promising novel technique for tackling honeybee diseases and improving their immunity. The endogenous LAB isolates were recovered from honeybee gut samples collected from different apiaries in two Egyptian governorates and screened for antagonistic activities against Paenibacillus larvae (pathogen of AFB disease). The results showed that 53.3% of tested LAB isolates (n = 120) exhibited antagonistic activities against P. larvae. The minimum inhibitory concentration and minimum bactericidal concentration of the most potent LAB isolate (with an inhibition zone of 44 mm) were 100 and 125 µL/mL, respectively. 16S rRNA sequencing identified the most potent isolate as Fructobacillus fructosus HI-1. The bioactive metabolites of F. fructosus were extracted with ethyl acetate and fractionated on thin-layer chromatography (TLC); also, bioactive fractions were detected. Heptyl 2-methylbutyrate, di-isobutyl phthalate, D-turanose, heptakis (trimethylsilyl), di-isooctyl phthalate, and hyodeoxycholic acid compounds were identified in the bioactive fractions. The result explores the promising administration of probiotic metabolites to control honeybee AFB disease, as a natural tool to substitute antibiotics and chemicals in disease-controlling strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call