Abstract
PurposeIn this paper, we propose deep-learning methodology with which to enhance the mass differentiation performance of convolutional neural network (CNN)-based architecture.Materials and MethodsWe differentiated breast mass lesions from gray-scale X-ray mammography images based on regions of interest (ROIs). Our dataset comprised breast mammogram images for 150 cases of malignant masses from which we extracted the mass ROI, and we composed a CNN-based deep learning model trained on this dataset to identify ROI mass lesions. The test dataset was created by shifting some of the training data images. Thus, although both datasets were different, they retained a deep structural similarity. We then applied our trained deep-learning model to detect masses on 8-bit mammogram images containing malignant masses. The input images were preprocessed by applying a scaling parameter of intensity before being used to train the CNN model for mass differentiation.ResultsThe highest area under the receiver operating characteristic curve was 0.897 (Î 20).ConclusionOur results indicated that the proposed patch-wise detection method can be utilized as a mass detection and segmentation tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.