Abstract

A new technique for quickly assessing extensive areas of large-scale landslides that uses digital elevation models (DEMs) extracted from high-resolution satellite images is presented in this paper. The proposed technique observes the elevation changes by using multitemporal DEMs. Five-meter-resolution DEMs from SPOT-5 images are applied to two large-scale landslide disasters: the landslides triggered by the 2004 Mid Niigata prefecture earthquake (magnitude 6.8; a moderate-topography area in Central Japan), and the landslides caused by the 2004 typhoon Mindulle (a steep-topography area in Central Taiwan). Both events yielded elevation changes in excess of 10 m. We assess the DEMs produced by the proposed method and their landslide application. We find three main results. 1) The elevation difference error increases with the slope angle. The root-mean-square error was 4-5 m on slopes lower than 30deg in both areas, whereas it was 5-6 m for slopes that exceeded 30deg in moderate topographies and 5-9 m in steep topographies. 2) The proposed technique well delineated the large-scale landslides. The total rate of successful area detection was over 70% for slopes under 40 deg but under 40% for slopes that exceeded 40 deg. 3) The landslide volume could be roughly estimated in units of 100times10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> . The developed technique well supports damage assessments of large-scale landslides because the location, depth, and volume can be quantitatively determined by remote sensing

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.