Abstract

A method for the automatic detection and vectorization of roads from lidar data is presented. To extract roads from a lidar point cloud, a hierarchical classification technique is used to classify the lidar points progressively into road and non-road points. During the classification process, both intensity and height values are initially used. Due to the homogeneous and consistent nature of roads, a local point density is introduced to finalize the classification. The resultant binary classification is then vectorized by convolving a complex-valued disk named the Phase Coded Disk (PCD) with the image to provide three separate pieces of information about the road. The centerline and width of the road are obtained from the resultant magnitude image while the direction is determined from the corresponding phase image, thus completing the vectorized road model. All algorithms used are described and applied to two urban test sites. Completeness values of 0.88 and 0.79 and correctness values of 0.67 and 0.80 were achieved for the classification phase of the process. The vectorization of the classified results yielded RMS values of 1.56 m and 1.66 m, completeness values of 0.84 and 0.81 and correctness values of 0.75 and 0.80 for two different data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.