Abstract
Detection and tracking of dynamic objects is a key feature for autonomous behavior in a continuously changing environment. With the increasing popularity and capability of micro aerial vehicles (MAVs) efficient algorithms have to be utilized to enable multi object tracking on limited hardware and data provided by lightweight sensors. We present a novel segmentation approach based on a combination of median filters and an efficient pipeline for detection and tracking of small objects within sparse point clouds generated by a Velodyne VLP-16 sensor. We achieve real-time performance on a single core of our MAV hardware by exploiting the inherent structure of the data. Our approach is evaluated on simulated and real scans of in- and outdoor environments, obtaining results comparable to the state of the art. Additionally, we provide an application for filtering the dynamic and mapping the static part of the data, generating further insights into the performance of the pipeline on unlabeled data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.