Abstract
In order to screen for new microbial D-amino acid oxidase activities a selective and sensitive peroxidase/o-dianisidine assay, detecting the formation of hydrogen peroxide was developed. Catalase, which coexists with oxidases in the peroxisomes or the microsomes and, which competes with peroxidase for hydrogen peroxide, was completely inhibited by o-dianisidine up to a catalase activity of 500 nkat ml(-)(1). Thus, using the peroxidase/o-dianisidine assay and employing crude extracts of microorganisms in a microplate reader, a detection sensitivity for oxidase activity of 0.6 nkat ml(-)(1) was obtained.Wild type colonies which were grown on a selective medium containing D-alanine as carbon, energy and nitrogen source were examined for D-amino acid oxidase activity by the peroxidase/o-dianisidine assay. The oxidase positive colonies possessing an apparent oxidase activity > 2 nkat g dry biomass(-)(1) were isolated. Among them three new D-amino acid oxidase-producers were found and identified as Fusarium oxysporum, Verticilium lutealbum and Candida parapsilosis. The best new D-amino oxidase producer was the fungus F. oxysporum with a D-amino acid oxidase activity of about 900 nkat g dry biomass(-)(1) or 21 nkat mg protein(-)(1). With regard to the use as a biocatalytic tool in biotechnology the substrate specificities of the three new D-amino acid oxidases were compared with those of the known D-amino acid oxidases from Trigonopsis variabilis, Rhodotorula gracilis and pig kidney under the same conditions. All six D-amino acid oxidases accepted the D-enantiomers of alanine, valine, leucine, proline, phenylalanine, serine and glutamine as substrates and, except for the D-amino acid oxidase from V. luteoalbum, D-tryptophane, D-tyrosine, D-arginine and D-histidine were accepted as well. The relative highest activities (>95%) were measured versus D-alanine (C. parapsilosis, F. oxysporum, T. variabilis), D-methionine (V. luteoalbum, R. gracilis), D-valine (T. variabilis, R. gracilis) and D-proline (pig kidney). The D-amino oxidases from F. oxysporum and V. luteoalbum were able to react with the industrially important substrate cephalosporin C although the D-amino acid oxidase from T. variabilis was at least about 20-fold more active with this substrate.As the results of our studies, a reliable oxidase assay was developed, allowing high throughput screening in a microplate reader. Furthermore, three new microbial D-amino acid oxidase-producers with interesting broad substrate specificities were introduced in the field of biotechnology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.