Abstract

We demonstrate the application of interferometric scattering microscopy (IFS) for characterizing submicron particles in stir-stressed monoclonal antibody. IFS uses a layered silicon sensor and modified optical microscope to rapidly visualize and determine the particle size distribution (PSD) of submicron particles based on their scattering intensity, which is directly proportional to particle mass. Limits for particle size and optimal solution concentration were established for IFS characterization of submicron particles. We critically compare IFS data with dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) and find IFS is superior to NTA and DLS for determining the realistic shape of the number-based PSD, whereas NTA and DLS provide superior information about absolute particle size. Together, IFS, NTA, and DLS provide complementary information on submicron particles and enable quantitative characterization of the PSD of submicron aggregates. Finally, we explore quantifying particle size with IFS by developing a calibration curve for particle scattering intensity based on correlative scanning electron microscopy imaging. We found that only a subset of isotropic-shaped particles followed the expected proportionality between IFS intensity and particle mass. Overall, this study demonstrates IFS is a simple approach for detecting and quantifying submicron aggregate PSD in protein-based therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.