Abstract

To evaluate detectability and semi-automatic diameter and volume measurements of pulmonary nodules in ultralow-dose CT (ULDCT) vs regular-dose CT (RDCT). Fifty patients with chronic obstructive pulmonary disease (COPD) underwent RDCT on 64-multidetector CT (120 kV, filtered back projection), and ULDCT on third-generation dual source CT (100 kV with tin filter, advanced modeled iterative reconstruction). One radiologist evaluated the presence of nodules on both scans in random order, with discrepancies judged by two independent radiologists and consensus reading. Sensitivity of nodule detection on RDCT and ULDCT was compared to reader consensus. Systematic error in semi-automatically derived diameter and volume, and 95% limits of agreement (LoA) were evaluated. Nodule classification was compared by κ statistics. ULDCT resulted in 83.1% (95% CI: 81.0-85.2) dose reduction compared to RDCT (p < 0.001). 45 nodules were present, with diameter range 4.0-25.3 mm and volume range 16.0-4483.0 mm3. Detection sensitivity was non-significant (p = 0.503) between RDCT 88.8% (95% CI: 76.0-96.3) and ULDCT 95.5% (95% CI: 84.9-99.5). No systematic bias in diameter measurements (median difference: -0.2 mm) or volumetry (median difference: -6 mm3) was found for ULDCT compared to RDCT. The 95% LoA for diameter and volume measurements were ±3.0 mm and ±33.5%, respectively. κ value for nodule classification was 0.852 for diameter measurements and 0.930 for volumetry. ULDCT based on Sn100 kV enables comparable detectability of solid pulmonary nodules in COPD patients, at 83% reduced radiation dose compared to RDCT, without relevant difference in nodule measurement and size classification. Pulmonary nodule detectability and measurements in ULDCT are comparable to RDCT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.