Abstract

Extended-spectrum beta-lactamases (ESBLs) are enzymes produced in some gram-negative bacilli that mediate resistance to extended-spectrum cephalosporins and aztreonam. They are most common in Klebsiella spp. and Escherichia coli but are present in a variety of Enterobacteriaceae. Resistance mediated by these enzymes can be difficult to detect depending on the antimicrobial agents tested. AmpC beta-lactamases are related to the chromosomal enzymes of Enterobacter and Citrobacter spp. and also mediate resistance to extended-spectrum cephalosporins and aztreonam in addition to cephamycins, such as cefoxitin. Unlike ESBLs, however, AmpC beta-lactamases are not inhibited by clavulanic acid or other similar compounds. To assess the abilities of various antimicrobial susceptibility testing methods to detect ESBLs, we sent three ESBL-producing organisms, one AmpC-producing organism, and a control strain that was susceptible to extended-spectrum cephalosporins to 38 laboratories in Connecticut for testing. Eight (21.0%) of 38 labs failed to detect extended-spectrum cephalosporin or aztreonam resistance in any of the ESBL- or AmpC-producing isolates. Errors were encountered with both automated and disk diffusion methods. Conversely, seven (18.4%) labs categorized at least some of the four resistant isolates as potential ESBL producers and reported the results with the extended-spectrum cephalosporins and aztreonam as resistant as suggested by current National Committee for Clinical Laboratory Standards (NCCLS) guidelines. The percentage of laboratories that failed to detect resistance in the ESBL or AmpC isolates ranged from 23.7 to 31.6% depending on the type of enzyme present in the test organism. This survey suggests that many laboratories have difficulty detecting resistance in ESBL and AmpC-producing organisms and may be unaware of the NCCLS guidelines on modifying susceptibility testing reports for ESBL-producing strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.