Abstract

BackgroundBorder disease virus (BDV) causes important reproductive losses, and eradication strategies focus on the identification and removal of persistently infected animals arising after in uterine infection. BDV infection dynamics were studied in 13 ewes experimentally infected with BDV-4 genotype at 3 phases of pregnancy [days 108 (group A), 76 (group B) and 55 (group C)] by quantification of viral RNA in blood collected on days -1 to parturition using quantitative real-time RT-PCR (qRT-PCR). Viral RNA loads were also measured in blood/foetal fluid and tissue samples from their offspring at lambing (3 foetuses, 7 stillborns, 15 lambs). qRT-PCR results were compared with those obtained by conventional RT-PCR and used to predict persistent infections.ResultsViral RNA was detected in the ewes between days 2-15 p.i. The viraemia reached its highest peak between days 6-7 p.i. with a second peak at days 11-12 p.i. qRT-PCR was significantly faster to perform (less than 1 h) than conventional RT-PCR and detected BDV RNA in more ewes, being detection more continuous and prolonged in time. The virus was detected in peripheral blood in a higher percentage of lambs than in tissues, where differences in viral genome copies were more marked. Skin and cerebral cortex showed the highest viral RNA loads, and spleen and spinal cord the lowest. High viral RNA loads were observed in several animals in group B and all in group C, infected during middle and early foetal development, respectively, but also in one lamb from group A, infected during late foetal development. Serology and viral genome copy number estimates in blood and tissues were used to establish a quantitative cut-off threshold for transient viraemia.ConclusionViral RNA quantification showed potential for the discrimination between persistent infections and transient viraemia using single-time point blood sampling and raised questions regarding foetal immune system development and the occurrence of persistent infections.

Highlights

  • Border disease virus (BDV) causes important reproductive losses, and eradication strategies focus on the identification and removal of persistently infected animals arising after in uterine infection

  • The genus Pestivirus comprises four main species: bovine viral diarrhoea virus types 1 and 2 (BVDV 1 and BVDV 2), border disease virus (BDV) of sheep, and classical swine fever virus (CSFV), each of them subdivided into several genetic subtypes

  • Infections during early embryonic and foetal development can lead to the birth of immunotolerant and seronegative persistently infected (PI) animals that shed the virus throughout their lifetime and are the continuous source of infection within and among flocks

Read more

Summary

Introduction

Border disease virus (BDV) causes important reproductive losses, and eradication strategies focus on the identification and removal of persistently infected animals arising after in uterine infection. BDV infection dynamics were studied in 13 ewes experimentally infected with BDV-4 genotype at 3 phases of pregnancy [days 108 (group A), 76 (group B) and 55 (group C)] by quantification of viral RNA in blood collected on days -1 to parturition using quantitative real-time RT-PCR (qRT-PCR). (BVDV 1 and BVDV 2), border disease virus (BDV) of sheep, and classical swine fever virus (CSFV), each of them subdivided into several genetic subtypes. Effective control measures are based on identifying and eliminating PI animals, and reliable diagnostic techniques are essential for detecting the presence of the virus and for investigating biological aspects of the infection like dynamics, transmission or viral load

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.