Abstract

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and targets for approved drugs. The analysis of GPCR expression is, thus, important for drug discovery and typically involves messenger RNA (mRNA)-based methods. We compared transcriptomic complementary DNA (cDNA) (Affymetrix) microarrays, RNA sequencing (RNA-seq), and quantitative polymerase chain reaction (qPCR)-based TaqMan arrays for their ability to detect and quantify expression of endoGPCRs (nonchemosensory GPCRs with endogenous agonists). In human pancreatic cancer-associated fibroblasts, RNA-seq and TaqMan arrays yielded closely correlated values for GPCR number (∼100) and expression levels, as validated by independent qPCR. By contrast, the microarrays failed to identify ∼30 such GPCRs and generated data poorly correlated with results from those methods. RNA-seq and TaqMan arrays also yielded comparable results for GPCRs in human cardiac fibroblasts, pancreatic stellate cells, cancer cell lines, and pulmonary arterial smooth muscle cells. The magnitude of mRNA expression for several Gq/11-coupled GPCRs predicted cytosolic calcium increase and cell migration by cognate agonists. RNA-seq also revealed splice variants for endoGPCRs. Thus, RNA-seq and qPCR-based arrays are much better suited than transcriptomic cDNA microarrays for assessing GPCR expression and can yield results predictive of functional responses, findings that have implications for GPCR biology and drug discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.