Abstract

The rapid and reliable identification and quantification of pathogens is essential for the management of economically important plant diseases. Fusarium oxysporum f. sp. cucumerinum is the soil borne fungus responsible for Fusarium vascular wilt of cucumber. In this study, we report the development of a specific and reliable real-time quantitative PCR assay and the development of an ultra-sensitive diagnostic pseudo-nested PCR assay. The capacity of the PCR assays to accurately identify and quantify Fusarium oxysporum f. sp. cucumerinum was experimentally tested by the development of standard curves from serial dilutions of copy numbers in a range of complex environmental DNA samples. The amplification efficiency, sensitivity and reproducibility of the qPCR assays were not significantly affected by the presence of any of the non-target background DNA tested. In quantitative real-time PCR, as few as 100 copies could be reliably quantified, and in simple and pseudo-nested PCR as little as 10 pg and 10 fg, respectively, could be detected. This rapid and sensitive qPCR method can be used to facilitate investigations into plant–pathogen interactions, epidemiology, and disease management practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call