Abstract
In this investigation, surface-enhanced Raman spectroscopy (SERS) technology was performed to detect bucinnazine hydrochloride (BH) injection in water and urine. The theoretical Raman spectrum of BH with characteristic peaks was calculated and identified by density functional theory (DFT). Employing an improved silver sol as a SERS active substrate, the SERS spectra of a BH solution with different concentrations were acquired with a 0.5 mol/L KI solution as an aggregation agent. It was determined that the limit of detection (LOD) was low, to 0.01 μg/mL. A good linear relationship of BH between the Raman intensity and the concentrations was obtained in water at a concentration range from 0.5 to 6 μg/mL (R2 = 0.9914), which laid a favorable foundation for quantitative analysis. In addition, the recovery rate of spiked samples from 95.13 to 120.54% were calculated. Finally, the detection of BH injection in artificial urine was completed and the detection limit could reach 0.5 μg/mL, which met the requirements of a rapid on-site detection of drugs in urine. As a result, it indicates that the inspection of BH by the SERS method is with simplicity and high sensitivity, having a great potential for real-time detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.