Abstract

Mobile ad-hoc network is a collection of dynamically organized nodes where each node acts as a host and router. Mobile ad-hoc networks are characterized by the lack of preexisting infrastructures or centralized administration. So, they are vulnerable to several types of attacks, especially the Blackhole attack. This attack is one of the most serious attacks in this kind of mobile networks. In this type of attack, the malicious node sends a false answer indicating that it has the shortest path to the destination node by increasing the sequence number and decreasing the number of hops. This will have a significant negative impact on source nodes which send their data packets through the malicious node to the destination. This malicious node drop received data packets and absorbs all network traffic. In order overcome this problem, securing routing protocols become a very important requirement in mobile ad-hoc networks. Multipath routing protocols are among the protocols affected by the Blackhole attack. In this paper, we propose an effective and efficient technique that avoids misbehavior of Blackhole nodes and facilitates the discovery for the most reliable paths for the secure transmission of data packets between communicating nodes in the well-known Ad hoc On-demand multi-path routing protocol (AOMDV). We implement and simulate our proposed technique using the ns 2.35 simulator. We also compared on how the three routing protocols AOMDV, AOMDV under Blackhole attack (BHAOMDV), and the proposed solution to counter the Blackhole attack (IDSAOMDV) performs. The results show the degradation on how AOMDV under attack performs, it also presents similarities between normal AOMDV and the proposed solution by isolating misbehaving node which has resulted in increase the performance metrics to the standard values of the AOMDV protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.