Abstract

Geostationary satellite remote sensing systems are a useful tool for forest fire detection and monitoring because of their high temporal resolution over large areas. In this study, we propose a combined 3-step forest fire detection algorithm (i.e., thresholding, machine learning-based modeling, and post processing) using Himawari-8 geostationary satellite data over South Korea. This threshold-based algorithm filtered the forest fire candidate pixels using adaptive threshold values considering the diurnal cycle and seasonality of forest fires while allowing a high rate of false alarms. The random forest (RF) machine learning model then effectively removed the false alarms from the results of the threshold-based algorithm (overall accuracy ~99.16%, probability of detection (POD) ~93.08%, probability of false detection (POFD) ~0.07%, and 96% reduction of the false alarmed pixels for validation), and the remaining false alarms were removed through post-processing using the forest map. The proposed algorithm was compared to the two existing methods. The proposed algorithm (POD ~ 93%) successfully detected most forest fires, while the others missed many small-scale forest fires (POD ~ 50–60%). More than half of the detected forest fires were detected within 10 min, which is a promising result when the operational real-time monitoring of forest fires using more advanced geostationary satellite sensor data (i.e., with higher spatial and temporal resolutions) is used for rapid response and management of forest fires.

Highlights

  • Forest fires can have a significant impact on terrestrial ecosystems and the atmosphere, as well as on society in general

  • The threshold-based algorithm detected most forest fires, it resulted in a high rate of false alarms

  • The large brightness temperature (BT) difference between the shortwave (3–4 μm) and thermal bands can be observed in fire pixels, and the BT difference has been used in other fire detection algorithms [9,15,33,34]

Read more

Summary

Introduction

Forest fires can have a significant impact on terrestrial ecosystems and the atmosphere, as well as on society in general. According to the 2015 forest standard statistics, forest areas in South Korea cover 6,335,000 ha, accounting for 63.2% of the national land. When a forest fire occurs, it can develop into a large one if early extinguishment fails, resulting in huge amounts of damage [2]. To minimize forest fire damage, South Korea has been conducting forest fire monitoring through tower systems and closed-circuit television (CCTV) [2]. An alternative to such field monitoring is satellite-based monitoring, which can cover vast areas including inaccessible regions with fine temporal resolution [4]. Various satellite sensors have been used for forest fire detection, such as polar-orbiting satellite sensors (Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), the Landsat series, and the Visible Infrared Imaging Radiometer Suite (VIIRS)), and geostationary satellite sensor systems (Geostationary Operational Environmental Satellite (GOES), Spinning Enhanced Visible and Infrared Imager (SEVIRI), Communication, Ocean and Meteorological Satellite (COMS), and Himawari-8)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call