Abstract
The aim of this study was to investigate the molecular mechanisms conferring amikacin (AMK) resistance in Mycobacterium abscessus clinical isolates. A total of 194M. abscessus clinical isolates were collected from patients with pulmonary disease during the period 2012-2017. AMK susceptibility was determined by the broth microdilution method. Whole-genome data were used for identification of mutations in resistance-associated genes. Quantitative reverse transcription PCR (qRT-PCR) was performed to measure the gene transcriptional level. AMK showed high in vitro killing activity against M. abscessus, with an MIC50 of 8mg/L and an MIC90 of 16mg/L. Five isolates (2.6%) were resistant to AMK (MIC>1024mg/L), of which four (80.0%) harboured a resistance-associated rrs mutation A1408G. qRT-PCR analysis showed that most of the AMK-resistant isolates (4/5; 80.0%) overexpressed the transcriptional regulator gene whiB7 and the multidrug-efflux transporter gene tap. However, overexpression of the aminoglycoside-modifying enzyme gene eis2 was only observed in one (20.0%) AMK-resistant isolate. The AMK resistance rate in M. abscessus clinical isolates in this study was low (2.6%). The A1408G mutation in rrs and overexpression of WhiB7 and Tap were the predominant mechanisms of AMK resistance in M. abscessus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.