Abstract

The biotransformation of dehydrochloromethyltestosterone (DHCMT, 4-chloro-17β-hydroxy,17α-methylandrosta-1,4-dien-3-one) in man was studied with the aim to discover long-term metabolites valuable for the antidoping analysis. Having applied a high performance liquid chromatography for the fractionation of urinary extract obtained from the pool of several DHCMT positive urines, about 50 metabolites were found. Most of these metabolites were included in the GC–MS/MS screening method, which was subsequently applied to analyze the post-administration and routine doping control samples. As a result of this study, 6 new long-term metabolites were identified tentatively characterized using GC–MS and GC–MS/MS as 4-chloro-17α-methyl-5β-androstan-3α,16,17β-triol (M1), 4-chloro-18-nor-17β-hydroxymethyl,17α-methyl-5β-androsta-1,13-dien-3α-ol (M2), 4-chloro-18-nor-17β-hydroxymethyl,17α-methyl-5β-androst-13-en-3α-ol (M3), its epimer 4-chloro-18-nor-17α-hydroxymethyl,17β-methyl-5β-androst-13-en-3α-ol, 4-chloro-18-nor-17β-hydroxymethyl,17α-methylandrosta-4,13-dien-3α-ol (M4) and its epimer 4-chloro-18-nor-17α-hydroxymethyl,17β-methylandrosta-4,13-dien-3α-ol. The most long-term metabolite M3 was shown to be superior in the majority of cases to the other known DHCMT metabolites, such as 4-chloro-18-nor-17β-hydroxymethyl,17α-methylandrosta-1,4,13-trien-3-one and 4-chloro-3α,6β,17β-trihydroxy-17α-methyl-5β-androst-1-en-16-one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.