Abstract

AbstractDiabetic retinopathy (DR) is one of the leading causes of blindness for people suffering from diabetes. Microaneurysm (MA) is the initial symptom of DR. MA is a lesion based disease which starts as small red spots on the retina and increases in size as the DR progresses which finally leads to blindness. So eliminating the lesion can effectively prevent DR at an early stage. However, due to complex retinal structure, different brightness and contrast of fundus images with effects of factors such as different patients, environment changes, and difference in acquisition equipment, it is difficult for existing detection algorithms to achieve accurate results of MA detection and location. Therefore, the detection algorithm of improved YOLOv4 (YOLOv4‐Pro) was proposed. First, an improved Fuzzy C‐Means (IFCM) clustering algorithm was proposed to optimize anchor parameters of target samples to improve matching results between anchors and feature graphs. In order to control noise and improve efficiency, a median filtering method was employed to update the criterion function of the original FCM algorithm, and a K‐means algorithm was employed to initialize clustering. Second, a SENet attention module was added in the backbone of YOLOv4 to enhance key information and suppress background, improving the confidence of MA effectively. Finally, the spatial pyramid pooling (SPP) module was added to the neck to enhance the acceptance domain of the output characteristics of the backbone network, and profits separating of important context information. The improved YOLOv4 with IFCM was verified on the Kaggle DR dataset and compared with other methods. Experimental results show that optimizing the prior frame with the IFCM algorithm can make it suitable to frame the Kaggle DR dataset, which improves the detection accuracy of the network by nearly 5%, and provides a nice performance on detection and location of MA in fundus images. This would help ophthalmologists finding the exact location of MA on retina, thereby simplifying the process and eliminating any manual intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.