Abstract

Time Synchronization Attacks (TSAs) against Phasor Measurement Units (PMUs) constitute a major threat to modern smart grid applications. By compromising the time reference of a set of PMUs, an attacker can change the phase angle of their measured phasors, with potentially detrimental impact on grid operation and control. Going beyond traditional residual-based techniques in detecting TSAs, in this paper we propose the use of Graph Signal Processing (GSP) to model the power grid so as to facilitate the detection and localization of TSAs. We analytically show that modeling the state of the power system as a low-pass graph signal can significantly improve the resilience of the grid against TSAs. We propose TSA detection and localization methods based on GSP, leveraging state-of-the-art machine learning algorithms. We provide empirical evidence for the efficiency of the proposed methods based on extensive simulations on five IEEE benchmark systems. In fact, our methods can detect at least 77% more TSAs of significant impact and localize an additional 70% of the attacked PMUs compared to state-of-the-art techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call