Abstract

The ability of a numerical procedure to detect and to localize two experimentally induced, epicardial dipolar generators was tested in 24 isolated, perfused rabbit heart preparations, suspended in an electrolyte-filled spherical tank. Electrocardiograms were recorded from 32 electrodes on the surface of the test chamber before and after placement of each of two epicardial burns. The second lesion was located either 180 degrees, 90 degrees, or 45 degrees from the first. Signals were processed by iterative routines that computed the location of one or two independent dipoles that best reconstruced the observed surface potentials. The computed single dipole acounting for 99.68% of root mean sequare (RMS) surface potential recorded after the first burn was located 0.26 +/- 0.10 cm from the centroid of the lesion. Potentials recorded after the second lesions were fit with two dipoles that accounted for 99.36 +/- 1.51% of RMS surface potentials and that were located 0.42 +/- 0.26 cm and 0.57 +/- 0.49 cm from the centers of the corresponding burn. Seventy-one percent of computed dipoles were located within the visible perimeter of the burn. Thus, two simultaneously active dipolar sources can be detected and accurately localized by rigorous study of the generated electrical field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.