Abstract

The maintenance cost of wind turbines needs to be minimized in order to keep their competitiveness and, therefore, effective maintenance strategies are important. The remote location of wind farms has led to an opportunistic maintenance strategy where maintenance actions are postponed until they can be handled simultaneously, once the optimal opportunity has arrived. For this reason, early fault detection and identification are important, but should not lead to a situation where false alarms occur on a regular basis. The goal of the study presented in this paper was to detect and identify wind turbine bearing faults by using fault-specific features extracted from vibration signals. Automatic identification was achieved by training models by using these features as an input for a one-class support vector machine. Detection models with different sensitivity were trained in parallel by changing the model tuning parameters. Efforts were also made to find a procedure for selecting the model tuning parameters by first defining the criticality of the system and using it when estimating how accurate the detection model should be. Method was able to detect the fault earlier than using traditional methods without any false alarms. Optimal combination of features and model tuning parameters was not achieved, which could identify the fault location without using any additional techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call