Abstract

Non-destructive ultrasonic evaluation is one of the methods used for inspection in mechanical engineering. This method has diverse applications in various fields, including industry and medicine. The main purpose of this research is to identify a subcutaneous defect with ultrasonic waves. This is done by sending ultrasonic waves into the skin tissue and receiving backward echoes, simulating them using a software, and calculating the time difference using the speed of sound. In this research, the behavior of longitudinal and transverse waves is investigated in collisions with a defect by describing the genesis and application history as well as the principles and definitions of ultrasonic waves. In the test, first, the method of identifying the subcutaneous defect is explained. Then, the dimensions and stiffness of the defect are determined by analyzing the information obtained from the location. Using the 3.5-MHz probe, the defect was detected at a distance of 1.8 mm, indicating a high level of reliability compared to the sonography imaging device. This was while the 10-MHz probe failed to detect the defect just near the skin surface. The results confirm the choice of this method as a suitable method for detecting the subcutaneous defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.