Abstract

Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) is used during the PCG in order to identify the systolic and diastolic parts manually. In this study a heart sound segmentation algorithm has been developed which separates the heart sound signal into these parts automatically. This study was carried out on 100 patients with normal and abnormal heart sounds. The algorithm uses discrete wavelet decomposition and reconstruction to produce PCG intensity envelopes and separates that into four parts: the first heart sound, the systolic period, the second heart sound and the diastolic period. The performance of the algorithm has been evaluated using 14,000 cardiac periods from 100 digital PCG recordings, including normal and abnormal heart sounds. In tests, the algorithm was over 93% correct in detecting the first and second heart sounds. The presented automatic segmentation algorithm using wavelet decomposition and reconstruction to select suitable frequency band for envelope calculations has been found to be effective to segment PCG signals into four parts without using an ECG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call