Abstract

Early detection and monitoring of algal blooms and potentially toxic cyanobacteria in source waters are becoming increasingly important with rising climate change and industrialization. There is a growing need to measure the mixed microalgae cultures sensitively and accurately, as multiple algae species are present in natural source waters. This study investigated the detection of an equal concentration, mixed-culture of cyanobacteria (Microcystis aeruginosa) and a common green algae (Chlorella vulgaris) in water using UV-Vis spectrophotometry while employing longer pathlengths and derivative spectrophotometry to improve the detection limit. A strong linear relationship (R2>0.99) was found between the concentration and absorbance of the mixed-culture at 682nm using 50 and 100mm pathlengths. This study showed that the cyanobacterial (phycocyanin) peak could be separately identified in mixed-culture setting, while the chlorophyll peaks of both algae overlapped each other. The lowest detection limit of the mixed algal culture using traditional spectrophotometry and derivative spectrophotometry was calculated to be 25,997 cells/mL and 5505 cells/mL using a 100mm cuvette pathlength. Lastly, the performance of mixed-culture and individual algal cultures were compared, and analyses were carried out to evaluate differences in slopes which can be used for quantification purposes. The results indicate that derivative spectrophotometry significantly improved the detection limit making the method potentially viable for the early detection of mixed algal cultures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call