Abstract

Here, we determined the electron spin resonance (ESR) spectra of standard reaction mixtures (I) containing 25 μM flavin mononucleotide (FMN), 0.018% tea tree (Melaleuca alternifolia) oil, 1.9 M acetonitrile, 20 mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and 1.0 mM FeSO4(NH4)2SO4 irradiated with 436 nm visible light (7.8 J/cm2). Prominent ESR signals (αN = 1.58 mT and αHβ = 0.26 mT) were detected, suggesting that free radicals form in the standard reaction. In order to know whether singlet oxygen (1O2) is involved in the radical formation or not, ESR measurement was performed for the standard D2O reaction mixture (I) which contained 25 μM FMN, 0.0036% tea tree oil, 1.9 M acetonitrile-d3, 20 mM phosphate buffer (pH 7.4), 0.1 M 4-POBN and 1.0 mM FeSO4 in D2O. The ESR peak height of the standard D2O reaction increased to 169 ± 24% of the control. Thus, 1O2 seems to be involved in the formation of the radicals because D2O increases the lifetime of singlet oxygen. High-performance liquid chromatography-ESR-mass spectrometry analyses detected 1-methylethyl and methyl radicals in the standard reaction. The radicals appear to form through the reaction of ferrous ion with α-terpinene endoperoxide (ascaridole), which generated from the reaction of α-terpinene with 1O2. The 1-methylethyl and methyl radicals may exert a pro-oxidant effect under these conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call