Abstract

This study utilizes the linear and nonlinear features of guided waves (GWs) for detecting and evaluating heat damage in reinforced concrete (RC) beams. The RC beams with embedded sensors attached at rebar ends are experimentally studied using longitudinal GW at 200 kHz after heating the specimens in a furnace from 100°C to 300°C. For the studies investigating the effect of heat damage on the RC beams beyond 300°C, the rebar ends are exposed outside the concrete so that the longitudinal transducers can be attached there. These specimens are then experimentally studied using GW with an excitation frequency of 100 kHz. In this study, the RC beams are prepared as fully bonded and debonded specimens. The experimental study shows that heat damage in the RC beams causes debonding between rebar and concrete enabling GW signal to generate second harmonics. The experimental study also discussed the linear features of GW, which shows that the amplitude of the GW signal increases with elevated temperatures in the RC beams. To distinguish material nonlinearity and contact nonlinearity, two types of nonlinear parameters are defined in this study. The nonlinear parameter due to the contact acoustic nonlinearity effect in the RC beams is defined as β, whereas the nonlinear parameter due to material nonlinearity is defined as β m . The study shows that β m is negligible in comparison to β at relevant heated temperatures. With the increase in temperature, the nonlinear parameter β is significantly increased at elevated temperatures. The peak amplitude of the nonlinear parameter β is observed at the maximum heated temperature 800°C for both bonded and debonded specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.