Abstract

In this paper, we propose a method based on wavelet analysis to detect and estimate jump points in non parametric regression function. This method is applied to AR(1) noise process under random design. First, the test statistics are constructed on the empirical wavelet coefficients. Then, under the null hypothesis, the critical values of test statistics are obtained. Under the alternative, the consistency of the test is proved. Afterward, the rate of convergence, the estimators of the number, and locations of change points are given theoretically. Finally, the excellent performance of our method is demonstrated through simulations using artificial and real datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.