Abstract

An approach to detection and diagnosis of multiple failures in a dynamic system is proposed. It is based on the interacting multiple-model (IMM) estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural as well as parametric changes. The proposed approach provides an integrated framework for fault detection, diagnosis, and state estimation. It is able to detect and isolate multiple faults substantially more quickly and more reliably than many existing approaches. Its superiority is illustrated in two aircraft examples for single and double faults of both sensors and actuators, in the forms of "total", "partial", and simultaneous failures. Both deterministic and random fault scenarios are designed and used for testing and comparing the performance fairly. Some new performance indices are presented. The robustness of the proposed approach to the design of model transition probabilities, fault modeling errors, and the uncertainties of noise statistics are also evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.