Abstract

ObjectivesDeep convolutional neural networks (CNNs) are a rapidly emerging new area of medical research, and have yielded impressive results in diagnosis and prediction in the fields of radiology and pathology. The aim of the current study was to evaluate the efficacy of deep CNN algorithms for detection and diagnosis of dental caries on periapical radiographs. Materials and methodsA total of 3000 periapical radiographic images were divided into a training and validation dataset (n = 2400 [80%]) and a test dataset (n = 600 [20%]). A pre-trained GoogLeNet Inception v3 CNN network was used for preprocessing and transfer learning. The diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for detection and diagnostic performance of the deep CNN algorithm. ResultsThe diagnostic accuracies of premolar, molar, and both premolar and molar models were 89.0% (80.4–93.3), 88.0% (79.2–93.1), and 82.0% (75.5–87.1), respectively. The deep CNN algorithm achieved an AUC of 0.917 (95% CI 0.860–0.975) on premolar, an AUC of 0.890 (95% CI 0.819–0.961) on molar, and an AUC of 0.845 (95% CI 0.790–0.901) on both premolar and molar models. The premolar model provided the best AUC, which was significantly greater than those for other models (P < 0.001). ConclusionsThis study highlighted the potential utility of deep CNN architecture for the detection and diagnosis of dental caries. A deep CNN algorithm provided considerably good performance in detecting dental caries in periapical radiographs. Clinical significanceDeep CNN algorithms are expected to be among the most effective and efficient methods for diagnosing dental caries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call