Abstract
Among all the elements that are integrated into a structural health monitoring (SHM) system, methods or strategies for damage detection and classification are nowadays playing a key role in enhancing the operational reliability of critical structures in several industrial sectors. The main contribution of this paper is the application of a new methodology to detect and classify structural changes. The methodology is based on: 1) an artificial immune system (AIS) and the notion of affinity is used for the sake of damage detection; 2) a fuzzy c-means algorithm is used for damage classification. One of the advantages of the proposed methodology is the fact that to develop and validate the strategy, a model is not needed. Additionally, and in contrast to standard Lamb waves-based methods, there is no need to directly analyse the complex time-domain traces containing overlapping, multimodal and frequency dispersive wave propagation that distorts the signals and difficult the analysis. The proposed methodology is applied to data coming from two sections of an aircraft skin panel. The results indicate that the proposed methodology is able to accurately detect damage as well as classify those damages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.